SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	SOFTWARE ENGINEERING		
Code No.:	CET 305		
Program:	COMPUTER ENGINEERING TECHNOLOGY		
Semester:	SIXTH		
Date:	WINTER 1990		
Author:	F. TURCO		
	New: Revision: X		
Approved:	hout Date: 90/02/06		

CET305

SOFTWARE ENGINEERING

GENERAL OBJECTIVES

This course is the follow up course for systems analysis and design. Once the student has a grasp of SDLC and an understanding of the system requirements he/she will actually develop the system in this system in this course.

TEXTBOOKS:

1. "Modern Structured Analysis" by Edward Yourdon.

ASSESSMENT:

Theory Tests, Practical Tests and Quizzes 40% Assignments 60%

Some minor modifications to the above percentages may be necessary. The instructor reserves the right to adjust the mark up or down 5% based on attendance, participation and whether there is an improving trend.

* - All Assignments must be completed satisfactorily to complete this course. Late hand in penalties will be 5% per day. Assignments will not be accepted past one week late unless there are extenuating and legitimate circumstances.

BLOCK 1 PLANNING A SOFTWARE PROJECT (PROJECT MANAGEMENT)

At the end of this block the student shall be able to:

- 1. Understand the concept of planning and its relevance.
- 2. Define project goals and requirements.
- Discuss the relationship of planning with respect to project size.
- 4. Discuss the project planning development process including:
 - a) Project Phases.
 - b) Milestones, Documents, Reviews.
 - c) The cost aspects of each phase of the project.
 - d) Prototyping.
 - e) Successive versions.
- 5. Discuss the project planning organizational structures including:
 - a) Project Format
 - b) Project team structure
 - c) Project quality assurance
 - d) Project verification and validation
- Define and Maintain a GAUNT Chart of the plan and actual time taken for the assigned tasks.

BLOCK 2 COMPUTER SYSTEM DESIGN AND PROGRAMMING

At the end of this block the student shall be able to:

- Discuss the technical issues of converting the functional specification to a computer system.
- 2. Define the file sizes and tool limitations.
- 3. Describe structured coding techniques and style.
- 4. Prepare program specifications.
- Develop the programs required to build the system.
- 6. Demonstrate effective program coding and testing.
- 7. Coordinate and execute effective system testing.

BLOCK 3 VERIFICATION AND VALIDATION TECHNIQUES

- 1. Discuss the purpose of software quality assurance.
- Demonstrate the usefulness of walkthroughs and inspections throughout the software life cycle.
- 3. Demonstrate unit testing and debugging.
- Describe software system testings such as:
 - a) integration testing
 - b) acceptance testing
- Produce a system overview document.
- 6. Post implementation managerial presentation.

BLOCK 4 SOFTWARE MAINTENANCE

At the end of this block the student shall be able to:

- 1. Define the maintenance phase of the software life cycle.
- Describe the activities that enhance maintainability during development.
- Discuss the managerial aspects of software maintenance.
- 4. Discuss automated tools for software maintenance.

GRADING SCHEME

TESTS

Written tests will be conducted as deemed necessary; generally at the end of each block of work. They will be announced about one week in advance. Practical on-line tests will be conducted in which time to complete the assigned problems will be a factor in the evaluation. Quizzes may be conducted without advance warning.

ASSIGNMENTS

Assignments not completed by the assigned due date will be penalized by 5% per day late. All assignments must be completed satisfactorily to complete the course.

GRADING SCHEME

A+	90	-	100%	Outstanding achievement
A	80	-	89%	Excellent achievement
В	70	-	79%	Average Achievement
C	55	_	69%	Satisfactory Achievement

U Incomplete: Course work not complete at Mid-term. Only used at mid-term.

R Repeat

A temporary grade that is limited to instances where special circumstances have prevented the student from completing objectives by the end of the semester. An X grade must be authorized by the Chairperson. It reverts to an R if not upgraded in an agreed-upon time, less than 120 days.

UPGRADING OF INCOMPLETE

: .

When a student's course work is incomplete or final grade is below 55%, there is the possibility of upgrading to a pass when the student's performance warrants it. Attendance and assignment completion will have a bearing on whether upgrading will be allowed. A failing grade on all tests will remove the option of any upgrading and an R grade will result. The highest grade on re-written tests or assignments will be 56%.

Where a student's overall performance has been consistently unsatisfactory, an R grade may be assigned without the option of make-up work.

The method of upgrading is at the discretion of the teacher and may consist of one or more of the following options: assigned make-up work, re-doing assignments, re-writing of tests, or writing a comprehensive supplemental examination.